

Planning Commission Work Session #2

Meeting Agenda

- Review vision statement
- Optimal 2030 corporate boundary
- Annexation scenarios
- Issues & needs lists

Good Stewardship

 Protect Auburn's rich and distinct character and heritage while continuing to (foster, cultivate) a future character and heritage worth preserving.

Future land use plan methodology

- AIGM modeling will serve as the foundation for the Future Land Use Plan
- The baseline scenario will tell us where growth is projected to occur by 2030 based on existing city limits and zoning

PARKS & OPEN SPACE

TRANSPORTATION

Future land use plan methodology

- The AIGM allows us to test what impact changes to land uses, zoning, or other factors will have on our future growth
- As part of the development of the future land use plan, staff will choose several land use scenarios to test with the growth model
- The alternate land use scenarios will then be evaluated
- A consultant report on pros/cons of each scenario will be provided

Determining the 2030 optimal corporate boundary

- The AIGM allocates population in the study area based on the existing corporate boundary of the City
- Consideration of the City's optimal corporate boundary in 2030 is an important part of the comprehensive planning process
- Choosing the optimal 2030 corporate boundary is the first step in developing the land use plan

Future land use plan methodology

2030 optimal corporate boundary methodology

- Develop list of inputs
- Determine how to measure inputs
- Rank inputs
- Run model
- Review model output
- Adopt 2030 optimal boundary
- Choose zoning

2030 optimal corporate boundary methodology: Develop list of inputs

Annexation plan

County master plan

Current and future road network (buffered to required

ROW by type)

Current land use (County)

Distance from city center

Enclaves

Fire protection

Flood zones

Growth boundary

Loachapoka city limits

Lot Size (County)

Opelika city limits

Planning Jurisdiction (Opelika Growth Area)

Police coverage

Road LOS 2030 (75 ft buffer?)

Sewer Basins

Steep Slopes

Water authority service areas

Water availability (all providers)

Watersheds

Wetlands

2030 optimal corporate boundary methodology: Input measurement

- How should each input be represented and ranked geographically?
- All items rated from ideal to prohibitive

Ideal	Good	Suitable	Poor	Bad	Prohibitive
1	2	3	4	5	999

2030 optimal corporate boundary methodology: Input measurement

- Example: Fire stations
 - Input layer is current fire station locations
 - Stations are buffered at 1.5, 2.5 and 5 miles
 - Parcels within each buffer are ranked by location
 - Within 1.5 miles: Ideal
 - Within 2.5 miles: Good
 - Within 5 miles: Suitable
 - All others: Bad

2030 optimal corporate boundary methodology: Input measurement

 Parcels are then selected based on the boundaries and converted to rasters

2030 optimal corporate boundary methodology: Rank inputs

Input	Annexation boundary	County master plan	Current and future road network	Current land use (County)	Distance from city center	Enclaves	Fire protection	Flood zones	Growth boundary	Lot Size (County)	Planning Jurisdiction (Opelika Growth Area)	Police coveræe	Road LOS 2030 (75 ft buffer?)	Sewer Basins	Steep Slopes	Water authority service areas	Water availability (Current City)	Watersheds	Wetlands	Weights
Annexation boundary	1.00	4.00	2.00	4.00	1.00	1.00	2.00	4.00	1.00	4.00	0.33	4.00	2.00	1.00	4.00	1.00	0.50	2.00	4.00	0.08
County master plan	0.25	1.00	0.50	2.00	0.50	0.33	0.50	1.00	0.33	2.00	0.33	2.00	0.50	0.33	4.00	0.50	0.25	1.00	3.00	0.03
Current and future road network	0.50	2.00	1.00	3.00	1.00	0.25	1.00	3.00	1.00	4.00	2.00	4.00	1.00	1.00	3.00	3.00	0.50	1.00	4.00	0.06
Current land use (County)	0.25	0.50	0.33	1.00	0.25	0.20	0.50	2.00	0.33	1.00	0.33	3.00	0.33	0.25	1.00	0.50	0.25	0.50	3.00	0.03
Distance from city center	1.00	2.00	1.00	4.00	1.00	0.25	3.00	4.00	0.33	3.00	0.25	3.00	0.50	0.25	4.00	0.33	0.33	0.33	3.00	0.05
Enclaves	1.00	3.00	4.00	5.00	4.00	1.00	3.00	4.00	2.00	3.00	1.00	4.00	1.00	2.00	5.00	2.00	1.00	1.00	5.00	0.10
Fire protection	0.50	2.00	1.00	2.00	0.33	0.33	1.00	2.00	1.00	3.00	1.00	4.00	1.00	0.33	2.00	2.00	0.33	1.00	2.00	0.05
Flood zones	0.25	1.00	0.33	0.50	0.25	0.25	0.50	1.00	0.25	0.50	0.33	0.50	0.33	0.20	1.00	0.33	0.25	0.33	1.00	0.02
Growth boundary	1.00	3.00	1.00	3.00	3.00	0.50	1.00	4.00	1.00	2.00	1.00	3.00	0.50	1.00	3.00	0.50	0.50	1.00	3.00	0.06
Lot Size (County)	0.25	0.50	0.25	1.00	0.33	0.33	0.33	2.00	0.50	1.00	0.25	0.33	0.25	0.25	0.50	0.25	0.20	0.33	1.00	0.02
Planning Jurisdiction	3.00	3.00	0.50	3.00	4.00	1.00	1.00	3.00	1.00	4.00	1.00	2.00	1.00	0.50	4.00	2.00	0.33	1.00	2.00	0.07
Police coverage	0.25	0.50	0.25	0.33	0.33	0.25	0.25	2.00	0.33	3.00	0.50	1.00	0.33	0.20	1.00	0.33	0.20	0.25	1.00	0.02
Road LOS 2030	0.50	2.00	1.00	3.00	2.00	1.00	1.00	3.00	2.00	4.00	1.00	3.00	1.00	0.33	4.00	2.00	0.50	1.00	2.00	0.06
Sewer Basins	1.00	3.00	1.00	4.00	4.00	0.50	3.00	5.00	1.00	4.00	2.00	5.00	3.00	1.00	2.00	2.00	0.50	2.00	1.00	0.09
Steep Slopes	0.25	0.25	0.33	1.00	0.25	0.20	0.50	1.00	0.33	2.00	0.25	1.00	0.25	0.50	1.00	0.25	0.25	0.25	0.33	0.02
Water authority service areas	1.00	2.00	0.33	2.00	3.00	0.50	0.50	3.00	2.00	4.00	0.50	3.00	0.50	0.50	4.00	1.00	0.25	0.50	1.00	0.05
Water availability	2.00	4.00	2.00	4.00	3.00	1.00	3.00	4.00	2.00	5.00	3.00	5.00	2.00	2.00	4.00	4.00	1.00	1.00	2.00	0.11
Watersheds	0.50	1.00	1.00	2.00	3.00	1.00	1.00	3.00	1.00	3.00	1.00	4.00	1.00	0.50	4.00	2.00	1.00	1.00	2.00	0.06
Wetlands	0.25	0.33	0.25	0.33	0.33	0.20	0.50	1.00	0.33	1.00	0.50	1.00	0.50	1.00	3.00	1.00	0.50	0.50	1.00	0.03

2030 optimal corporate boundary methodology: Run model and review output

COMPPLAN 2030 THE COMPREHENSIVE PLAN FOR THE CITY OF AUBURN

2030 optimal corporate boundary methodology: Adopt boundary and zoning

- Once the output is complete, the parcel-level data will be used to help determine the optimal 2030 boundary
- After the boundary is adopted, potential zoning for the newly-annexed areas must be chosen. All land in the growth model must be assigned growth potential.

Future land use plan methodology

Potential Growth Scenarios

- Staff has developed a list of potential items to test, either singly or in combination
- These potential scenarios all relate to issues identified so far by the CompPlan

Multi-Family Uses: Issues

- Changes in the City's demographics over time will reduce the need for additional multi-family units
- Continued addition of multi-family units risks saturating the market

 Allowing multi-family by right in CDD has allowed multi-family in less than optimal locations over time

Multi-Family Uses: Scenario

- Remove multi-family as a permitted use from CDD
- Change assumptions about what percentage of CDD is occupied by multi-family
- Will reduce build-out density of CDD

Zoning: Issues

- Some zones in the City may be over allocated
- In particular, the CDD zone covers 9.5 sq miles
- Because CDD is the most permissive zone, its prevalence makes focusing more intense development at appropriate locations (such as pursuing a nodal strategy) difficult at best

Zoning: Issues (Continued)

- Interest has also been expressed in expanding the Urban Core
- Increasing density in infill areas has been a topic of strong interest
- Looking at other zones may also be desirable

Zoning: Scenarios

 Changes to where zones are located can be modeled, as can concepts for new zones

Patterns of Development: Issues

- Completion of the Outer Loop would have a profound effect on land use
- The one acre lot requirement in the county disincentivizes annexation into the City, where the Rural zone's three acres is the default minimum

Patterns of Development: Issues

 Nodal development would place certain commercial and higher-intensity uses at specified transportation nodes

Patterns of Development: Scenarios

- The effect of the Outer Loop on land use and growth can be modeled
- The effect of modifying required lot sizes in the Planning Jurisdiction and inside the City could be modeled as well
- Nodal development can be tested by changing zoning and use allocations

What scenarios are preferred?

Multi-Family

 Remove MF from CDD

Zoning

- Reduce CDD
- Expand UC
- Increased infill
- Other zones?

Patterns of Development

- Outer Loop
- Equalize lot size in planning jurisdiction
- Nodal development

Next steps

- Finalize boundary
- Determine growth potential of boundary
- Run scenarios
- Send issues & needs to stakeholder organizations
- Determine land use plan methodology

Questions?

